
A Reinforcement-Learning Approach to

Color Quantization

Chien-Hsing Chou1*, Mu-Chun Su2, Yu-Xiang Zhao3 and Fu-Hau Hsu2

1Department of Electrical Engineering, Tamkang University,

Tamsui, Taiwan 251, R.O.C.
2Department of Computer Science & Information Engineering, National Central University,

Taoyuan, Taiwan 320, R.O.C.
3Department of Computer Science & Information Engineering, National Quemoy University,

Kinmen, Taiwan 892, R.O.C.

Abstract

Color quantization is a process of sampling three-dimensional color space (e.g. RGB) to reduce

the number of colors in a color image. By reducing to a discrete subset of colors known as a color

codebook or palette, each pixel in the original image is mapped to an entry according to these palette

colors. In this paper, a reinforcement-learning approach to color image quantization is proposed.

Fuzzy rules, which are used to select appropriate parameters for the adaptive clustering algorithm

applied to color quantization, are built through reinforcement learning. By comparing this new method

with the original adaptive clustering algorithm on 30 color images, our method shows an improvement

of 3.3% to 5.8% in peak signal to noise ratio (PSNR) values on average and results in savings of about

10% in computation time. Moreover, we demonstrate that reinforcement learning is an efficacious as

well as efficient way to provide a solution of the learning problem where there is a lack of knowledge

regarding the input-output relationship.

Key Words: Color Quantization, Color Reduction, Classifier Systems, Pattern Recognition,

Reinforcement Learning, Neuro-Fuzzy Systems, Machine Learning

1. Introduction

True type color images can consist of more than 10

million (224) possible colors in a 24 bit full RGB color

space. Consequently, it is very important in games and

mobile devices to reduce the number of image colors for

presentation, transmission and compression of color

images. The most popular techniques for color reduction

in digital images are the multithresholding and color

quantization approaches. In the multithresholding ap-

proach, proper thresholds are determined from color his-

tograms defining the limits of the image color classes

[1�5]. Since the approach is based on the assumption

that object and background pixels in an image can be

well distinguished by their colors, the multithresholding

approach does not give satisfactory results in the case of

complex images such as natural or textured images.

In color quantization, a true color image is irrevers-

ibly transformed into a color-mapped image consisting

of K carefully selected representative colors. The ulti-

mate goal of color quantization is to select K representa-

tive colors to ensure minimization of a specific distortion

measure between the original and the quantized images

[6�17]. In general, these color quantization algorithms

can be divided into two main categories: (a) splitting al-

gorithms [7�10] and (b) clustering-based algorithms [6,

11�17]. In this paper, we aim at improving the cluster-

ing-based algorithms. The performance of these cluster-

ing-algorithm-based techniques varies greatly depend-

ing on how the K representative colors are chosen. These

Tamkang Journal of Science and Engineering, Vol. 14, No. 2, pp. 141�150 (2011) 141

*Corresponding author. E-mail: chchou@mail.tku.edu.tw



techniques have to make a tradeoff between their com-

putational efficiency and minimization of the distortion

measure. For example, the K-means algorithm can effi-

ciently minimize the quantization error if enough num-

ber of iterations are allowed [12,13]. Hsieh and Fang

proposed an adaptive clustering (AC) algorithm for co-

lor quantization [14], in their algorithm the 3D RGB his-

togram of an input image is calculated first to generate a

sorted histogram bin list. Then the K palette colors corre-

sponding to the representative dominant colors are gen-

erated from the sorted histogram bin list. By controlling

carefully for a distance threshold, the palette colors will

be adaptively determined for the best situation. How-

ever, the authors did not provide guidance in how to

choose an appropriate distance threshold. It is the quest

for resolution of this question which motivated us to use

a neuro-fuzzy system trained in a reinforcement-learning

environment to choose an appropriate distance threshold

for the AC algorithm in order to further improve its per-

formance.

An overview of reinforcement learning can be found

in [18]. The article surveys the field of reinforcement

learning from a computer-science perspective. The ap-

proaches for solving reinforcement-learning problems

can be roughly divided into two strategies. The first is to

search among the range of behaviors in order to find one

that performs well in the environment. This approach has

been adapted by work in genetic algorithms and genetic

programming [19] as well as some more novel search

techniques [20]. The second strategy involves using sta-

tistical techniques and dynamic programming methods

to estimate the effectiveness of taking actions in different

states of the world, for example, adaptive heuristic critic

[21], temporal difference (TD(�)) [22], Q-learning [23,

24], etc. Each approach has its own relative advantages

and disadvantages. For example, some reinforcement

learning algorithms may suffer from the inordinate amount

of time required to learn an effective strategy.

In our previous work [25], we developed an adaptive

classifier-system-based neuro-fuzzy inference system

called ACSNFIS, which used a special reinforcement

learning algorithm to incrementally construct its archi-

tecture and tune the system parameters. The special rein-

forcement learning algorithm was motivated by the so-

called classifier system which is a machine learning sys-

tem that learns syntactically simple string rules (called

classifiers) [19,26]. In this paper, we use the ACSNFIS

to implement the reinforcement-learning-based color

quantization algorithm.

The organization of the paper is as follows. The AC

and the ACSNFIS algorithm are introduced in section 2.

In section 3, we describe how to combine the ACSNFIS

with the AC algorithm to solve the problem of color

quantization. Experimental results of the proposed me-

thod are given in section 4. Finally, in section 5 we

present the conclusions of the paper.

2. Brief Review of AC and ACSNFIS

Algorithms

Before we introduce the way to construct a rein-

forcement-learning-based approach to color image qu-

antization, we first briefly review the AC algorithm pro-

posed by Hsieh and Fan [14].

2.1 Brief Review of AC Algorithm

The AC algorithm is briefly described as follows:

Step 1: Accumulate all the pixels with the same color in

the input image to form a 3D RGB color histo-

gram. The Nb least significant bits of each color

component are set to be zero while the histogram

is calculated, where the parameter Nb is deter-

mined by the user. Here we assume that the num-

ber of the histogram bins is C. For example, each

of two color images shown in Figure 1 consists

of 256 � 256 pixels. We first sum up the histo-

gram bins for the two images. Figures 1(a) and

(b) contain a total of 61,389 and 33,870 different

colors, respectively. Then, the three least signifi-

cant bits (Nb = 3) of each color component (R, G

and B) are set to be 0. The number of reduced

histogram bins, C, of Figures 1(a) and (b) be-

come 2,860 and 992, respectively. The advan-

tage of such a procedure is that the reduced RGB

color space design can not only shorten the ex-

ecution time but also easily locate the dominant

colors in the image. Furthermore, Figure 1(a)

contains more histogram bins than Figure 1(b)

does. This means that Figure 1(a) is more color-

ful than Figure 1(b). In our opinion, one should

also consider this information in quantizing a

color image. More details are given in section 3.

142 Chien-Hsing Chou et al.



Step 2: Sort the histogram bins in a descending order

according to the histogram values. Table 1 shows

the list of the top 5 ordered histogram bins for

Figure 1(a).

Step 3: An adaptive clustering algorithm is used to in-

crementally select K dominant colors from the C

histogram bins {b1, b2, …, bC}.

(a) Set i = 1 and k = 1. Assign the histogram bin

b1 to dominant color DC1. Set � = �0, where

� is a distance threshold and �0 is its initial

value pre-specified by the user.

(b) Set i = i + 1. Find the nearest neighbor of bi

among the already found dominant colors ac-

cording to their RGB values. Let dim denote

the distance from bi to its nearest neighbor.

Suppose the nearest neighbor to be dominant

color DCm. Note that the distance between

the histogram bin bi and dominant color DCm

is defined as follows:

(1)

(c) If dim � �, then assign bi to DCm, otherwise,

set k = k + 1 and assign bi to be a new domi-

nant color DCk.

(d) If K dominant colors have been generated,

then go to Step (f). Else repeat Step (b) and

Step (c) till all bins have been processed.

(e) The value of the threshold � is updated as the

following equation:

(2)

where �d is the decreasing parameter pre-

specified by the user. Then set i = 1 and go

back to Step (b).

(f) Assign all the unassigned bins to their near-

est dominant colors.

Step 4: Re-calculate the R, G and B values of each do-

minant color as the weighted average of the R, G

and B values of all the bins assigned to it.

By controlling the distance threshold � carefully, the

palette colors will be adaptively determined for the best

situation. However, Hsieh and Fan did not provide guid-

ance about how to choose appropriate �0 and �d. They

empirically set the initial distance threshold �0 to be

25533 K . And they set the decreasing parameter �d to be

4 if the number of unfound dominant colors is larger than

64, otherwise they set �d to be 2.

Through our experiments with setting different �0

and �d, we found that the performance of the AC algo-

rithm greatly depends on these two parameters (espe-

cially �0). Better results could be achieved if the ap-

propriate parameters �0 and �d were used in the clus-

tering algorithm. We apply an AC algorithm to qu-

antize Figure 1(b) with Hsien and Fan’s suggestion

and 7 different sets of �0 and �d, for which the peak

signal-to-noise ratio (PSNR) values are given in Table

2. According to the performance results as shown in

Table 2, we have following observations: First, Hsien

and Fan’s suggestion of �0 and �d doesn’t achieve the

optimal performance. Second, the best set of parame-

ters �0 and �d among the entire sets is not identical for

quantizing different color numbers (color numbers of

8 and 16 in this case). Through some experiments, we

also found that selecting an appropriate �0 and �d is re-

A Reinforcement-Learning Approach to Color Quantization 143

Table 1. The list of top 5 ordered histogram bins for Figure 1(a) (Nb = 3)

Order 1 2 3 4 5 …

Histogram value (number of pixels) 382 337 231 220 182 …

R component value 144 152 240 136 240 …

G component value 192 192 72 192 72 …

B component value 224 224 40 224 48 …

Figure 1. Two color images. (a) Baboon; (b) House.

(a) (b)



lated to the desired number of quantization level K,

and the number of histogram bins C of the input image.

This means that we need an expert or a prediction sys-

tem to provide appropriate �0 and �d to deal with var-

ied quantizing conditions. These findings motivated

us to use a learning system to predict �0 and �d under

different conditions of K and C. However, we are un-

able to construct the training data set to train a learning

system through supervised learning since we lack know-

ledge of the input-output relationship between the in-

put parameters K and C and the desired output �0 and

�d. Hence, one possible way to solve this problem is to

apply reinforcement learning to construct a learning

system. In our previous work [25], the ACSNFIS uses

a special reinforcement learning algorithm to incre-

mentally construct its architecture and tune the system

parameters. Therefore, the ACSNFIS can be one of the

possible solutions to construct a learning system to pre-

dict appropriate �0 and �d.

2.2 Brief Review of ACSNFIS

In our previous work [25], a new approach to

fuzzy classifier systems was proposed and a class of

adaptive classifier-system-based neuro-fuzzy infer-

ence system referred to as ACSNFIS was developed to

implement such new fuzzy classifier systems. The pro-

posed ACSNFIS can not only tune its parameters but

also incrementally construct its architecture in a rein-

forcement-learning environment. Through injecting

new rules into the system, an ACSNFIS can explore

the possible solution space. The major difference be-

tween the proposed ACSNFIS and other neuro-fuzzy

systems is that each rule in an ACSNFIS is associated

with a strength parameter updated by a credit assign-

ment method such as the fuzzy bucket brigade algo-

rithm.

An ACSNFIS is a five-layer feedforward network,

as shown in Figure 2. The proposed ACSNFIS system

based on the reinforcement-learning model is schemati-

cally shown in Figure 3. More Deditals of ACSNFIS is

given in [25].

3. The Proposed Modified Adaptive

Clustering Algorithm

In this section, we proposed the modified adaptive

clustering (MAC) algorithm combined with ACSNFIS

and AC algorithm. Figure 4 shows the architecture of the

MAC algorithm. In our conception, choosing the suit-

able values of �0 and �d should be related to the desired

number of quantization levels K. Additionally, the num-

ber of histogram bins C of the input image may also in-

fluence the performance of the AC algorithm. These two

variables, K and C, are selected to be the inputs for the

ACSNFIS as shown in Figure 4. Instead of using K and C

directly, we use K� = log2(K) and � �
�

C
C

W H
as the in-

puts for the ACSNFIS. The use of the logarithm function

is to compress the difference between two large numbers

(e.g. since 256 � 128 = 128, but log2 256 � log2 128 = 1).

For large values of K, a small difference in the values of

the two parameters, �0 and �d, will not result in large dif-

ferent visual effects. However, for small values of K (e.g.

K = 8) different combinations of dominant colors will

greatly influence visual effects. Hence, we consider that

using K� = log2(K) should be more suitable than using K.

Moreover, we use � �
�

C
C

W H
to be the second input

variable, where W � H denotes the size of an input image.

If an image has a larger size, it usually contains greater

amounts of histogram bins C. Consequently it is reason-

able that we simply normalize the number of histogram

bins C to be C� with respect to its image size, and use C�

to be another input for the ACSNFIS.

After we enter two inputs, K� and C�, the outputs, �0

and �d, are predicted by the ACSNFIS according to the

144 Chien-Hsing Chou et al.

Table 2. The performance comparisons of Hsien and

Fan’s suggestion and another 7 sets of

parameters (Figure 1(b))

PSNR (db)
Parameter Setting

K = 8 K = 16

�0 = 33 255 K , �d = 2

(Hsien and Fan’s suggestion)
24.82 28.33

�0 = 32, �d = 2 25.78 29.14

�0 = 32, �d = 8 25.78 29.14

�0 = 64, �d = 2 26.41 28.89

�0 = 64, �d = 8 26.41 28.15

�0 = 128, �d = 8 25.39 28.51

�0 = 160, �d = 2 24.52 28.03

�0 = 160, �d = 8 24.82 29.06



initial parameters applied in the AC algorithm. Then, the

quantized image is reproduced by the AC algorithm. In

the training process, we calculate PSNR values to evalu-

ate the quantized image performance and provide further

comparison with another excellent color quantization

algorithm (K-means algorithm) to generate the reinfor-

cement signal. If the quantized image of the AC algo-

rithm performs a comparable effect to the K-means algo-

rithm, the ACSNFIS will then receive a reinforcement

signal with a larger value. Otherwise, it will receive a

reinforcement signal with a lower value. The temporal

difference (TD) of the reinforcement signal, r(t + 1) �

r(t), will be used to adjust the parameter in ACSNFIS by

rewarding the fuzzy rules by raising their strength or

punishing the fuzzy rules by lowering their strength.

After irrelatively training the ACSNFIS through the

above process, the MAC algorithm, which combines the

ACSNFIS with the AC algorithm, is shown to provide

better performance than the original AC algorithm. The

comparisons are given in section 4.

In the ACSNFIS, the crucial problem is how to de-

termine a reinforcement signal. The success of training

the ACSNFIS through reinforcement learning is always

related to providing an appropriate reinforcement signal.

Before we introduce our chosen method to determine the

reinforcement signal, we first define how to evaluate the

performance between an original image and its quan-

tized image. The PSNR is usually adopted to evaluate

this performance. Consequently, it can be used as the

basis of the reinforcement signal. The PSNR is defined

as follows:

(3)

where A(i, j, k) and B(i, j, k) are the RGB values of pixel

(i, j) taken from the original image and its correspond-

A Reinforcement-Learning Approach to Color Quantization 145

Figure 2. The architecture of the ACSNFIS.

Figure 3. The proposed ACSNFIS system in the reinforce-
ment-learning environment.

Figure 4. The architecture of the modified adaptive clustering (MAC) algorithm combining the ACSNFIS with the AC algo-
rithm.



ing quantized image, respectively.

Here, we use twenty color images for training, and

some of them are shown in Figure 5. For all training im-

ages, we apply the K-means algorithm [27] to quantize

the training images with K = 2n, for n = 1, 2, …, 9. For

each run we continued the K-means algorithm until 50

iterations were reached. Table 3 tabulates the resulting

PSNR values achieved for Figure 5(a).

After we obtain the PSNR values of all training

images, the reinforcement signal, r(t), of the ACSNFIS

with different K is further determined to be:

IF PSNRMAC (K) > PSNRKM (K)

THEN r(t) = 1;

ELSE IF PSNRKM (K) 	 PSNRMAC (K) 	 (PSNRKM (K)

� 10)

(4)

ELSE r(t) = 0;

where PSNRMAC (K) and PSNRKM (K) represent the PSNR

values resultant from the MAC algorithm and the

K-means algorithm, respectively. The idea of using the

reinforcement signal given in Eq. (4) is very straight-

forward. If the MAC algorithm achieves comparable

performance to the K-means algorithm, we can obtain a

larger value of r(t). Otherwise, r(t) will have a lower

value when the MAC algorithm performs worse than

the K-means algorithm. If K 
 2n, for n = 1, 2, …, 9, we

can simply use the linear interpolation to approximate

the values of PSNRKM (K). One thing should be noticed

here. In the training process of the MAC algorithm, the

K-means algorithm is applied to compare the quantized

image of MAC, and generate the reinforcement signal

r(t) by Eq. (4). Then the reinforcement signal r(t) is

used to update the parameter of the MAC algorithm.

However, the K-means algorithm is not executed in the

testing process, because we don’t need to generate the

reinforcement signal and update the parameter of the

MAC algorithm.

Besides, in the training process, the final goal is to

generate a well-trained MAC algorithm that may outper-

form K-means with 50 times iteration for the entire train-

ing images. In fact such situation is never met in the

training process, however, the Eq. (4) should still con-

sider this situation if MAC outperform K-means. Finally

the temporal difference of the reinforcement signal will

be used to reward or punish the strength of each rule by

using the Reward Mechanism [25].The training task was

decomposed into three sub-tasks such as are shown in

146 Chien-Hsing Chou et al.

Table 3. The PSNR values achieved for the Peppers image (Figure 5(a)) by running the K-means algorithm

Number of Colors (K) 2 4 8 16 32 64 128 256 512

PSNR (db) 17.262 20.803 24.428 27.255 29.626 32.023 34.238 36.262 38.130

Figure 5. Some examples of the training images.

(a) (b) (c) (d)

(e) (f) (g)



Table 4. At each sub-task, we trained the ACSNFIS for

500 trials. After 1500 trials, the ACSNFIS established 89

fuzzy rules.

4. Experimental Results

The experimental results were implemented in Bor-

land C++ Builder using an Intel Pentium 4 CPU 2 GHz

with 1 GB RAM under Microsoft Window 2000 envi-

ronments. The parameters of the ACSNFIS, �m, �s, Cbid,

Sr, Smax, and rt, were chosen to be 0.3, 0.1, 0.05, 2, 2, and

0.05, respectively. The learning rate � was selected to be

0.05. The parameter Nb was chosen to be 3 for the AC

algorithm and the MAC algorithm. For comparison pur-

poses, the AC algorithm and the K-means algorithm

were also applied to quantize the same set of test images.

The number of iterations was set at 10 for training the

K-means algorithm. For K-means algorithm, we have

tried different initializations of K dominant colors during

the training procedures. The PSNR value and computa-

tion time of the K-means algorithm were evaluated fi-

nally as the averages from these different initializations.

There were two test image sets used for testing, the

first test set contained four images as shown in Figure

6(a) to 9(a) and the second test set contained 30 color

images downloaded from the USC-SIPI image database

[28]. The number of histogram bins C for Figures 6(a),

7(a), 8(a), and 9(a) were 765, 592, 638, and 1134, respec-

tively. According to their different K� and C�, two para-

meters, �0 and �d, were predicted by the trained ACSNFIS.

The quantized results of four test images are shown in

Figure 6 to 9. Table 5 tabulates the comparison results. In

Table 5, the highlighted (bold and shaded) entries corre-

spond to the best performance among the three methods.

Two kinds of comparisons are listed. One is the PSNR

value of all reproduced images, while the other is the

computation time. In the first comparison, the K-means

algorithm achieves the highest PSNR for several cases,

especially for the Tiffany image (Figure 8). But it also

pays the price of having the longest computational time.

The proposed MAC algorithm achieves the highest

PSNR on the other cases, especially for the Science

image (Figure 9). Moreover, we observe that the MAC

algorithm requires the least processing time of all the

cases. This means that the MAC algorithm achieves

comparable performance (PSNR) to K-means algorithm

but only spends about 20% of the required execution

time on average. Here we would like to emphasize that if

the KM algorithm is processed more than 30 to 50 itera-

tions, the performance of the KM algorithm will outper-

form the MAC algorithm in all cases. However, this level

of performance necessitates a very long computational

time. We also observe that the computation time of the

MAC algorithm is shorter than that of the AC algorithm

in all cases (computational time is reduced by 10.4% on

average). According to the experimental results, we

show that our proposed MAC algorithm outperform the

AC algorithm in execution time and PSNR value.

A Reinforcement-Learning Approach to Color Quantization 147

Table 4. The individuated sub-tasks in the problem training process for color quantization

Sub-task Training conditions of the application to color quantization

(1) Using three images among the training images, and K = 2
n
, for n = 1, 2, …, 9

(2) Using all the training images, and K = 2
n
, for n = 1, 2, …, 9

(3) Using all the training images, and K = 2, 3, 4, …, 512

Figure 6. Test results for Jet image. (a) The original image.
The quantized images with 32 colors by using (b)
AC; (c) K-means; (d) MAC algorithm.

(a) (b)

(c) (d)



5. Conclusion

In this paper, we have shown a way to apply a rein-

forcement learning algorithm to solve the problem of

color quantization where there is lack of knowledge

about the input-output relationship. Reinforcement learn-

ing is used to generate the fuzzy rules for choosing more

appropriate parameters that are able to improve the per-

formance of the original AC algorithm. Compared with

the original AC algorithm in testing 30 color images, the

MAC algorithm improves average PSNR values by 3.3%

to 5.8%, and with less computational time. Compared

with the K-means algorithm, the MAC algorithm pro-

vides comparable quantized image performance but re-

quires only 20% of the computational time.

148 Chien-Hsing Chou et al.

Figure 7. Test results for Waterfall image. (a) The original
image. The quantized images with 32 colors by us-
ing (b) AC; (c) K-means; (d) MAC algorithm.

Figure 8. Test results for Tiffany image. (a) The original im-
age. The quantized images with 32 colors by using
(b) AC; (c) K-means; (d) MAC algorithm.

Figure 9. Test results for Science image. (a) The original im-
age. The quantized images with 32 colors by using
(b) AC; (c) K-means; (d) MAC algorithm.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

(a) (b)

(c) (d)



Acknowledgement

This work was partly supported by the National Sci-

ence Council, Taiwan, R.O.C, under the NSC 98-2218-

E-238-001 and the NSC 99-2221-E-238-017.

References

[1] Kittler, J. and lllingworth, J., “Minimum Error Th-

resholding,” Pattern Recognition, Vol. 19, pp. 41�47

(1986).

[2] Papamarkos, N. and Gatos, B., “A New Approach for

Multithreshold Selection,” Comput. Vision Graph. Im-

age Process. � Graph. Models Image Process., Vol.

56, pp. 357�370 (1994).

[3] Sahoo, P. K., Soltani, S. and Wong, A. K. C., “A Sur-

vey of Thresholding Techniques,” Comput. Vision,

Graph. Image Process., Vol. 41, pp. 233�260 (1988).

[4] Reddi, S. S., Rudin, S. F. and Keshavan, H. R., “An

Optimal Multiple Threshold Scheme for Image Seg-

mentation,” IEEE Trans. on System, Man, and Cyber-

netics, Vol. SMC-14, pp. 661�665 (1984).

[5] Tsai, D. M., “A Fast Thresholding Selection Procedure

for Multimodal and Unimodal Histograms,” Pattern

Recognition Letters, Vol. 16, pp. 653�666 (1995).

[6] Scheunders, P., “A Comparison of Clustering Algo-

rithms Applied to Color Image Quantization,” Pattern

Recognition Letters, Vol. 18, pp. 1379�1384 (1997).

[7] Heckbert, P., “Color Image Quantization for Frame

Buffer Display,” Comput. Graph., Vol. 16, pp. 297�

307 (1982).

[8] Wan, S. J., Prusinkiewicz, P. and Wong, S. K. M.,

“Variance Based Color Image Quantization for Frame

Buffer Display,” Color Res. Applicat., Vol. 15, pp.

52�58 (1990).

[9] Ashdown, I., “Octree Color Quantization,” Radiosity-

A Programmer’s Perspective , New York: Wiley (1994).

[10] Gervautz, M. and Purgathofer, W., “A Simple Method

for Color Quantization: Octree Quantization,” in Gra-

phics Gems, A. S. Glassner, Ed. New York: Academic,

pp. 287�293 (1990).

[11] Cheng, G., Yang, J., Wang, K. and Wang, X., “Image

Color Reduction Based on Self-Organizing Maps and

Growing Self-Organizing Neural Networks,” Sixth In-

ternational Conference on Hybrid Intelligent Systems,

pp. 24�24 (2006).

A Reinforcement-Learning Approach to Color Quantization 149

Table 5. The performance comparisons of four tested images

PSNR (db) Time (s)
Testing Image

No. of

Colors (K) AC K-means MAC AC K-means MAC

016 30.052 31.491 30.966 0.733 01.608 0.655

032 32.237 33.226 33.431 0.889 02.781 0.861

064 34.121 35.361 35.897 1.256 04.893 1.111

128 35.609 37.600 37.213 1.938 09.514 1.687

Jet

256 � 256

C = 765

256 38.131 40.045 38.579 3.171 18.767 2.686

016 28.525 29.376 29.403 0.502 01.032 0.486

032 31.791 31.926 32.611 0.626 01.721 0.579

064 34.452 35.269 35.322 0.891 03.438 0.766

128 36.922 37.569 37.466 1.296 06.517 1.187

Waterfall

172 � 256

C = 592

256 38.604 39.893 38.798 3.252 12.313 2.889

016 28.417 30.883 29.724 0.704 01.516 0.638

032 29.850 33.986 31.432 0.875 02.562 0.779

064 31.608 35.976 33.908 1.188 05.064 1.048

128 33.643 38.019 34.667 1.812 09.702 1.593

Tiffany

256 � 256

C = 638

256 35.626 40.079 36.567 3.108 16.968 2.673

016 22.363 24.052 24.185 0.721 01.421 0.704

032 23.942 26.466 26.656 0.921 02.189 0.811

064 26.905 28.569 29.177 1.234 04.360 1.077

128 29.740 30.598 31.618 1.845 08.375 1.627

Science

222 � 256

C = 1134

256 31.915 32.722 33.313 2.985 14.812 2.610



[12] Verevka, O., The Local K-means Algorithm for Color

Image Quantization, M.Sc. dissertation, Univ. Alberta,

Edmonton, AB, Canada (1995).

[13] Frackiewicz, M. and Palus, H., “Clustering with K-

Harmonic Means Applied to Colour Image Quanti-

zation,” 2008 IEEE International Symposium on Sig-

nal Processing and Information Technology, pp. 52�

57 (2008).

[14] Hsieh, I. S. and Fan, K. C., “An Adaptive Clustering

Algorithm for Color Quantization,” Pattern Recogni-

tion Letters, Vol. 21, pp. 337�346 (2000).

[15] Ashutosh, D., Bose, N. S. C., Kandula, P. and Kalra, P.

K., “Modified Forward Only Counterpropogation Net-

work (MFOCPN) for Improved Color Quantization by

Entropy Based Sub-Clustering,” 2007 International

Joint Conference on Neural Networks, pp. 1865�1870

(2007).

[16] Papamarkos, N., Atsalakis, A. E. and Strouthopoulos,

P., “Adaptive Color Reduction,” IEEE Trans. on Sys-

tem, Man, Cybernetics-Part B, Vol. 32, pp. 44�56

(2002).

[17] Cheng, F.-C. and Chen, Y.-K., “A New Approach of

Image Segmentation Based on Gray-Level Cluster-

ing,” 2009 IEEE International Symposium on Indus-

trial Electronics, pp. 775�778 (2009).

[18] Kaelbling, L. P., Littman, M. L. and Moore, A. W.,

“Reinforcement Learning: A Survey,” Journal of Arti-

ficial Intelligence Research, Vol. 4, pp. 237�285 (1996).

[19] Holland, J. H., Adaptation in Natural and Artificial

Systems, University of Michigan Press, Ann Arbor, MI

(1975).

[20] Schmidhuber, J., “A General Method for Multi-Agent

Learning and Incremental Self-Improvement in Unre-

stricted Environments,” In Yao, X. (Ed.), Evolutionary

Computation: Theory and Applications, Scientific

Publ. Co., Singapore (1996).

[21] Barto, A. G., Sutton, R. S. and Anderson, C. W.,

”Neuronlike Adaptive Elements that Can Solve Dif-

ficult Learning Control Problems,” IEEE Trans. on

System, Man, and Cybernetics, Vol. 13, pp. 834�846

(1983).

[22] Sutton, R. S., “Learning to Predict by the Methods of

Temporal Differences,” Machine Learning, Vol. 3, pp.

9�44 (1988).

[23] Watkins, C. J. C. H., Learning form Delayed Rewards,

Ph.D. thesis, King’s College, Cambridge, UK (1989).

[24] Watkins, C. J. C. H. and Dayan, P., “Q-Learning,” Ma-

chine Learning, Vol. 8, pp. 279�292 (1992).

[25] Su, M. C., Chou, C. H., Lai, E. and Lee, J., “A New

Approach to Fuzzy Classifier Systems and Its Ap-

plication in Self-Generating Neuro-Fuzzy Systems,”

Neurocomputing, Vol. 69, pp. 586�614 (2006).

[26] Goldberg, D., Genetic Algorithm in Search, Optimiza-

tion, and Machine Learning, Addison-Welsley, MA

(1989).

[27] Ball, H. and Hall, D. I., “Some Fundamental Concepts

and Synthesis Procedures for Pattern Recognition Pre-

processors,” Proc. of Int. Conf. Microwaves, Circuit

Theory, and Information Theory, Tokyo, Japan, pp.

281�297 (1964).

[28] The USC-SIPI Image Database. “http://sipi.usc.edu/

database/”.

Manuscript Received: Mar. 9, 2010

Accepted: Oct. 1, 2010

150 Chien-Hsing Chou et al.


